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We expand multivariate Bernstein approximation asymptotically in :his paper.
Our results generalize Bernstein's asymptotic formulae (c. R. Acad. S'i. URSS
(1932), 86-92) to the multivariate setting. ~. 1992 >"eadem,e Press. Inc

INTRODUCTION

Bernstein approximation, the approximation of functions by using
Bernstein polynomials, is one of the classic research topics but is a very
rich one. It dates back to 1912 and thousands of research papers related to
this topic have been published since then (cf. [8, 3, 4]). Recently, the multi­
variate version of Bernstein polynomials called polynomials in B-form has
attracted much attention and has become one of the main tools in com­
puter aided geometric design and in multivariate spline approximation for
the representation and computation of piecewise polynomial functions. The
theoretical results and applications of multivariate Bernstein polynomials
are well summarized in [2]. These motivate us to study the multivariate
Bernstein approximation. In this paper, we are interested in obtaining the
multivariate generalization of the asymptotic formulae of Bernstein
approximation (see [9] and [1] or [5]).

Since the multivariate version of Bernstein approximation has attracted
only sporadic attention as yet, there is not much research on the
generalization available in the literature. However, the bivariate generaliza­
tion was considered by Stancu. (See, e.g., [6,7].) But he did not obtain tne
asymptotic constant and only bivariate Bernstein polynomials defined on a
standard triangle were studied,

We are going to expand asymptotically the multivariate Bernstein
approximation on an arbitrary s-simplex in R S

, S ~ 1. To be precise, let
va, ..., vS

E R S be s + 1 distinct points such that the volume of the s-simp!ex
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<VO, .••, VS
) of vo, ... , VS is positive. Denote T = <vO, ••• , V

S
). Then for each

x E T, there exist unique 11.0, ..., As such that

S

X=LA;V;
;~o

with L~~o 11.;= 1 and A;~O, i=O, ..., s.
This (s + 1)-tuple 11.= (11.0' ..., As) is called the barycentric coordinate of x

with respect to T. It is well known that any polynomial Pn(x) of total
degree ,,;; n can be expressed by using the basic functions

in the form

Pn(X) = I c"B,,(A),
1"1 ~n
~E 71.5++ 1

XE T,

which is called Pn(x) in B-form as in [2]. Here, as usual, for any
IX = (1X0 , , IXs ) E zs++I, IIXI = 1X0 + ... + IXs and IX! = 1X0 ! "'lXs !' Also,
A" = A.~o A~'.

Let x" = (1/11X1) L~=o IX;V; for any IX E zs++ 1. For any continuous function
f(x) defined on T it is well known that the multivariate Bernstein poly­
nomials

Bn(f; x):= I f(x,) B,,(A.)
1"1 ~n

:XE71.
S
/

1

converge to f(x) uniformly on T as n -+ 00.

Our problem is to find the asymptotic expansion of Bn(f; x) - f(x). We
state our main results in the next section and prove them in the section
after.

1. STATEMENT OF MAIN RESULTS

Define the polynomials S~(x) of degree y by

S~(x)=nIYI I (xx-x)y B,,(A)
1"1 ~n

:::lEZ-,/l

for y E Z~. Then S~(x) satisfies the following recurrence relation.
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THEOREM 1. ForjE{l, ...,s} andYE£:s+,

S~+e1(x)= .f. Ai L (Vi -VOV- Ii (f3}') [n(v5- x) S'P(x) - SP+eJ(X)].
I ~O Ii <~'

Ii"";'
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Here fJ~)' iff f3j~)'j' j=l, ...,s and x=(x1, ...,xs ), V'=(V~, ...,v~},
i = 0, ..., s. Let us assume that f( x) is sufficiently smooth. Then f( xa ) has the
Taylor expansion at x

for any rx E £:S++ 1 with Irxl = 11. Thus,

BnU;x)-f(x)= L f(xa)B,().)-f(x)
lal ~Il
ClEL~+1

_ ~l'{ _I_"- L "DJ(x) lyISy(X)
l'EZ'+ } . 11

,,""0
1. 1 II= L -Dlj(X)_-S.(x)

"'EZ' y! nl)'1 J
, +

1,,1 ~2

since Bernstein polynomials preserve linear polynomials, i.e" S~(x) = 0 for
II'I ~ 1.

In order to obtain the asymptotic expansion of BnU; x) - f(x), we need
to further our study on S~(x). We have the following lemmas.

LEMMA 1. Fix ij, ...,i/E{O,l, ...,s}. Let [JE£:,++1 be the multi-integer
such thatrx i,'" rx ii = rx li for rx = (rxO' rx 1, ... ,rx,). Then there exist positive
integers C~ = n:~o [0; yJ (h, I' ~ f3 such thar

C~n(n -1) ... (n -11'1 + 1jA',

where ¢;k(t) := t k and [0; n", := [0, 1, ..., n ¢;k denotes the jth order divided
difference of rjJ k'
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Furthermore, let P7 be a collection of I-partitions of {I, ... , k}. Here, an
I-partition of {I, ..., k} is a set of index subsets {(II' ..., It): Ii l\ Ij = 0,
i, j = 1, ..., I, and U~~ I Ii = {I, ..., k} }. Denote by IP71 the cardinality of P7.
Then

LEMMA 2. Let pk = ke l and},t = lei with I::;; k. We have

IP71 = C~: = [0; I] cPk'

Hence, for any y ::;; p with Yj?: 1 if Pj # 0,

cp=l~ pp'l}' \C;J Yf'
i~O

where ® :~o P~: denotes the tensor product of partition collections P~:.

In particular, IPZI = 1, IP71 = 1, and IPZ-II =(~) for k?: 1.

With the lemmas above, we can show the following

THEOREM 2. For any YE 1'5+ with lyl ?: 2,

_1_" _ Iyl n(n - 1) ... (n - k + 1) k ( 5 j _ pi)
nll'l Si'(X) - ~ ,~, n lyl II .~ Aj(V x) .

k-I P p E7L+ ,-I ]-0
P'+ +pk=i'

Since LJ=o Aj(V j - xt; =°for any standard unit vector e i
E 1'5+, we have

the following

COROLLARY. For any YE1'~ with lyl ?: 2,

_1 S"( )=1i'~2 '" n(n-1)···(n-k+1) nk (~ ,1.( j_ .)P;)
n1i'1 i' x L.. L.. n li'l L.. ] V x .

k~ I P' pk E 7L'+ i~ I j=O
P'+ +pk~}.

IP;I ;;'2.i~ I, ...,k

In particular, for lyl = 2 and 3, we have

For YE1'~ with IYI =4, we write y=y(1)+y(2)+y(3)+y(4) with Iy(i)! = 1
for i = 1, 2, 3, 4 and have
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lIS . n(n - 1)
-S"( )--" A (J_ )Y+--,--
n1o'l Y x - n1i'1-1 L. j v x n1i'1

J=O

S S

+ 2: Ai(V i - x)i'(I)+YI3) L Ai(Vi - x)"l(21+i'(4)

i=O i=O

Therefore, we finally reach our conclusion.

THEOREM 3. For any IE C 2k
( T),

233

ye Z5+

1)'1';; 2k- 1

~ S;(X) DI(X)]
}'! n I)'!

When T= [0, 1] with V
O = 0 and Vi = 1 and hence Ao= 1- x and )'1 = x,

the asymptotic expansion above becomes the Bernstein expansion in [i J
or [5] since

1= _l2_k_-_l_)_l!
(2k) !

and

1

I A)v j -x)P'=x(l-x),
j~O

For k = 1 and k = 2, we have the following

COROLLARY. For any IE C 2(T},

Vi= 1, ..., k.
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For any fE C4(T),

lim n2 [Bn(f; x)-f(x)- L 1';1~1 I
n~oo YEZs+ n y.

Iyl ~ 2.3

x (to Ai(Vi-XV) DYf(X)]

= L ~ L (± .A'j (vi - X)PI)
yEZ",. y. pl,p2 EZ'+ i~o
Iyl =4 pi + p2 = l'

Ipll ~ Ip21= 2

2. PROOFS OF OUR RESULTS

Proof of Theorem 1. Define a generating function g of S;(x), y E z:~ by

x, t E [R:S.

Then

= L e(x.-X)'IB~(A)

I~I ~n

IX E Zs/ 1

It follows that for each j E {I, 2, ..., s},
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We obtain the following after some simplification:

s

+ X
j
g L A;(e vO

• tin _ eV'. tin)

;~I

s

- :L A;vj(evO . tin _ e V' - tin) g.
i~O

Thus,

On the other hand,

Since

= it Ai y~s+ p~y [(vj-XJ Sp(X) - Sp+:lX)]
P"ey

(Y) (i O)J"-P (t/n)yx f3 Y -Y -,-.
y.

Comparing the above expression with that of 8g/8tj , we immediately
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obtain the recurrence relation in Theorem 1. Hence, we have established
Theorem 1.

When T={(X I ,X2 ): O~Xl> x2~1 and 0~xI+x2~1}, the recurrence
relation is the same as the one obtained by Stancu in [6].

Proof of Lemma 1. By using the Newton interpolation formula,

k

rPk(t) = L [O;i]rPkt(t-l)···(t-i+l).
i=1

Thus,

s

rt. .••• rt.. = rt. f3 = TI rt. f3,
'L 11 1

i~O

L IT [O;1'j]rPf3/rt.j (rt.j -l)···(rt.j -Vj+l).
r<:;,f3 j~O

y/ "" I if f3J # 0

Hence,

s

L rt. f3BAJ..)= L TI[O;1'j]rPf3
J

1<>1 ~ n )' <:;, 13 j = 0
a E Zs++ 1 )lJ ~ 1 if /3J =F 0

x L TIrt.j(rt.j-l) .. ·(rt.j-1'j+l)B,,(J..)
1"1 ~n j~O

~ E zs++ 1

s

I TI [0; }'j] rPpjn(n - 1) '" (n -11'1 + 1pr.
),<:;,13 j~O

)'j"" 1 if f3J #O

We now need to show that Il;~o [0; 1'j] rPf3
J

is a positive integer. This can
be done by using an induction argument. We leave the details to the
interested reader. Actually, this fact follows from Lemma 2. Thus, we have
completed the proof of Lemma 1.

Proof of Lemma 2. We use induction to prove this lemma. It is clear
that IP:/=l and IP~+ll=1. We may assume that IP11=[0;iJrPj for
1~ i ~ j ~ k. For IP7 + II, we consider [0; I] rPk+ I' By a property of divided
differences and induction hypothesis,
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I

[O;I]<pk+l= L [O;JJ <Pk[j;k] rPl
j~O

= [0: 1-IJ rPk+ [0; I] <Pk1

= IP7-11 + llP71

= I{(II, ···,11- I' {k + 1} ): (II' ..., 11_ tl E P7- I }

U {(II> ...,~, ..., II): Ij=Iju {k+ I}, (II, ... , II)EP7}1

= IP7+ 1
1.

Thus, we have established C~; = IP 71 by the mathematical induction and
hence, the conclusion of this lemma.

Proof of Theorem 2. For any y E ;z's+ with h'l ;? 2, we decompose}' into
multi-integers m(i) of length 1, i = 1, ... , li'l, i.e., y = m(l) + ... + m('IY~).

Then

JYI. L
11,···,11~·1 =0 Yf:E;PUI •.... il:·I;

nJ ~ 1 if PUt- .. _, il~oI») *" a

xn(n-l) ... (n-If/I + 1)

640702-8
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By Lemma 2, we may rewrite the second summation of the above
expression with respect to the tensor product of partition collections of
{JUI' ..., i 1yl ) and interchange the order of summation of the above expres­
sion to get

n(n-1)···(n-k+1)

n 1yl

s

x L Ail(vil-x)pl"'AJJVJk_X)I3k

JI,···,Jk~O

n(n-1) .. ·(n-k+1)

n 1yl

Indeed, the summation L:I, ...,iIYI~O can be arranged in such a fashion that
for 1~k~min{s, Iyl}, iI' ..., i lyl are divided in k groups and each of them
varies from 0 to s independently and is not equal to the other groups. Then
we use Lemma 1 and Lemma 2 and interchange the order of the summa­
tion. For example, for k = 1,

1 s

;;TYT . L. L IY. il ••• IY.il,1
11= ... =11}'I=O rlEZ

S
/

1

1<xI~n

1 s Iyl
=;;TYiL L Ip!:lln(n-1) ... (n-k+1PJ(v J -x)Y

J~O k= I

IYI n(n - 1) ... (n - k + 1) s
= '" '" Iplyll Ak( J - )Y1.. n!YI 1.. k J V X
k~l J=O

Note that the first term above is one of the terms in (*). For k = 2, consider
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IYi L L 0(11'" 0(11'1

n Ii = 0, i2 = ... = ili'l = 0 I:J. E 7l. S++ 1
il:Fi2 !1:J.1=n

-;;JYT L
I~O,j~O

I~j

" " Ipi1@Pk!il-11-;;JYT L. L.
,~O,J=O (l,k)';;;(l, Iii-i)

I~j

239

n(n - 1)
nl)'1

L A).j(VI-x)m(l) (vj_x)y-m(ll+ ....
I~O,j~O

i~j

We can divide ii, ,.., il)'1 into the other kind of the two groups and find the
corresponding summation. There are IP!?,II possibilities of such partitions of
indices ii, ..., i l)'!. Thus, the second term in the summation for k = 1 comes
into play with the first term in the summation for k = 2 to become

n(n - 1)

n lyl L L AI(VI- x)lh Aj(Vj - X)p2,
/31 + /32 =)' I~O.j~O

which is one of the terms in the expression (*). These justify some of the
terms in (*). Similarly, we can verify the remaining terms. This completes
the proof.

Proof of Theorem 3. Since fE C 2k
( T), we expand f(xJ at x in Taylor

polynomials

2k-l 1 1
f(x,)= j~O }i.D~,-J(X)+(2k)! D~~_xf(ljJ,)

1
= L -D'f(x)(x,-x)"

,,!
1)'1';;; 2k I .

+ (2~)! (D~~_J(ljJ,) - D~~_J(x)),
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for some intermediate point ljJ,x' Thus,

1
+ L I" L (DYj(IjJ,)-DYj(x»)(xx-xf Bx(Je)·

Iyl ~2k y. Ixl =n
O':E1!..s++1

Now we apply Bernstein's argument to the second term of the above
expression. Indeed, we consider

I + L (Dlf(ljJx)-DYf(x»)(xx-xf Bx(Je)
Ixa-xl <6 IXx-xl;"15

and estimate each of the above two terms separately:

IIX'-~I<J~e I,,~n I(xo-xfl Bx(Je)
Ix,- xl <6

~e I Ilx,,-xIW B,,(Je)
Ixl ~1Z

= e I [(xx - x). (x" - X)]k Bx(Je)
Ixl =n

e s

- n2k. I I L ail'" a i2k B,,(Je)
JI,· ..,Jk~1 iI, .... i2k~O l"l~n

X (ViI _ X)m(hl (V i2 _ X)mUIl ... (V i2k - I _ X)m(hl (V i2k _ X)m(Jk)

s

=e L
s

I

n(n-l) .. ·(n-1 111+1) ..
X Je'1(v'I_x)mUd

n2k

Here, m(i) = e i
E Zs+ is a standard unit vector with 1 in the ith component

and 0 otherwise, i = 1, ..., s.
Let y(jl' ..., jk) = 2m(jd + ... +2m(jd E Zs+. As in the proof of

Theorem 2, we rewrite the third summation in terms of the tensor product
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of partition collections of f3(il' ..., i Zk ) and interchange the order of the
second and third summations of the above expression to get

n(n - 1)· . (n - i + 1)

f31, ... ,P'E z'+
f31 + ... + f3' ~ ;'(Jl, ···,ld

x I AIJVll_X)pl"'A/,(VI'-X)f3'

/1, ..·,li~O

=c: I I
il, ...,}"= 1 f31, ...,{Jl e ,25+

pl+ ... +f3'~y(jL,.... lk)
Ipll ~ 2. 1= 1..... i

n(n-1) .. ·(n-i+1I

X I~I (to Aj(V
j
- X)P').

Here we have used the fact that L:~oAi(vi_x)m(j)=O for any j= 1, ..., s.
Hence,

I I .1 ~c:O (:k)'
lxx-xi <0

Furthermore, letting Mf :=2max{IID2'JIIL x (TI}, we have

I I I~~[ I l(x(X-x)i'lllx,-xll~B(XU)
lxx-xi ~ii I(XI ~n

~ ~[ I [(X(X - x)· (X(X - x)]k+ 1 B(X(A).
I(XI ~n

As before, we can prove

With these two estimates and an application of the corollary of
Theorem 2, we obtain the result of Theorem 3.
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